Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.22.558930

ABSTRACT

Continued high levels spread of SARS-CoV-2 globally enabled accumulation of changes within the Spike glycoprotein, leading to resistance to neutralising antibodies and concomitant changes to entry requirements that increased viral transmission fitness. Herein, we demonstrate a significant change in ACE2 and TMPRSS2 use by primary SARS-CoV-2 isolates that occurred upon arrival of Omicron lineages. Mechanistically we show this shift to be a function of two distinct ACE2 pools based on cleavage or non-cleavage of ACE2 by TMPRSS2 activity. In engineered cells overexpressing ACE2 and TMPRSS2, ACE2 was cleaved by TMPRSS2 and this led to either augmentation or progressive attenuation of pre-Omicron and Omicron lineages, respectfully. In contrast, TMPRSS2 resistant ACE2 restored infectivity across all Omicron lineages through enabling ACE2 binding that facilitated TMPRSS2 spike activation. Therefore, our data support the tropism shift of Omicron lineages to be a function of evolution towards the use of uncleaved pools of ACE2 with the latter consistent with its role as a chaperone for many tissue specific amino acid transport proteins.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.13.528235

ABSTRACT

COVID-19 causes a clinical spectrum of acute and chronic illness and host / virus interactions are not completely understood. To identify host factors that can influence SARS-CoV-2 infection, we screened the human genome for genes that, when upregulated, alter the outcome of authentic SARS-CoV-2 infection. From this, we identify 34 new genes that can alter the course of infection, including the innate immune receptor P-selectin, which we show is a novel SARS-CoV-2 spike receptor. At the cellular level expression of P-selectin does not confer tropism for SARS-CoV-2, instead it acts to suppress infection. More broadly, P-selectin can also promote binding to SARS-CoV-2 variants, SARS-CoV-1 and MERS, acting as a general spike receptor for highly pathogenic coronaviruses. P-selectin is expressed on platelets and endothelium, and we confirm SARS-CoV-2 spike interactions with these cells are P-selectin-dependent and can occur under shear flow conditions. In vivo, authentic SARS-CoV-2 uses P-selectin to home to airway capillary beds where the virus interacts with the endothelium and platelets, and blocking this interaction can clear vascular-associated SARS-CoV-2 from the lung. Together we show for the first time that coronaviruses can use the leukocyte recruitment system to control tissue localization, and this fundamental insight may help us understand and control highly pathogenic coronavirus disease progression.


Subject(s)
Coronavirus Infections , Chronic Disease , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.09.467981

ABSTRACT

Although ACE2 is the primary receptor for SARS-CoV-2 infection, a systematic assessment of factors controlling SARS-CoV-2 host interactions has not been described. Here we used whole genome CRISPR activation to identify host factors controlling SARS-CoV-2 Spike binding. The top hit was a Toll-like receptor-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 Spike binding where it forms a cell surface complex with LRRC15 but does not support infection. Instead, LRRC15 functioned as a negative receptor suppressing both pseudotyped and live SARS-CoV-2 infection. LRRC15 is expressed in collagen-producing lung myofibroblasts where it can sequester virus and reduce infection in trans. Mechanistically LRRC15 is regulated by TGF-{beta}, where moderate LRRC15 expression drives collagen production but high levels suppress it, revealing a novel lung fibrosis feedback circuit. Overall, LRRC15 is a master regulator of SARS-CoV-2, suppressing infection and controlling collagen production associated with "long-haul" COVID-19.


Subject(s)
Fibrosis , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424641

ABSTRACT

COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected cells within the lung, and of protective or dysfunctional immune responses to the virus, is critical to effectively treat these patients. Currently, our understanding of cell-cell interactions across different disease states, and how such interactions may drive pathogenic outcomes, is incomplete. Here, we developed a generalizable workflow for identifying cells that are differentially interacting across COVID-19 patients with distinct disease outcomes and use it to examine five public single-cell RNA-seq datasets with a total of 85 individual samples. By characterizing the cell-cell interaction patterns across epithelial and immune cells in lung tissues for patients with varying disease severity, we illustrate diverse communication patterns across individuals, and discover heterogeneous communication patterns among moderate and severe patients. We further illustrate patterns derived from cell-cell interactions are potential signatures for discriminating between moderate and severe patients.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL